Nuclear physicist Toshiko Yuasa was born on December 11, 1909 in Taitō City, Japan. Unable to conduct research on nuclear physics in occupied postwar Japan, Yuasa went to France to do her scientific work. With the use of a Wilson chamber, she did experimental nuclear research in beta-decay. In 1957, she became a chief researcher at the Centre Nationale de la Recherche Scientifique. Her role as a trailblazer for Japanese women in science has elicited comparisons to Marie Curie, and she actively encouraged young women to study science.
Toshiko Yuasa died in 1980 at the age of 70.
Dark matter is a hypothetical kind of matter that cannot be seen with telescopes but would account for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, on radiation, and on the large-scale structure of the universe. Dark matter has not been detected directly, making it one of the greatest mysteries in modern astrophysics.
Dark matter neither emits nor absorbs light or any other electromagnetic radiation at any significant level. According to the Planck mission team, and based on the standard model of cosmology, the total mass–energy of the known universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy.[2][3] Thus, dark matter is estimated to constitute 84.5% [note 1] of the total matter in the universe, while dark energy plus dark matter constitute 95.1% of the total mass–energy content of the universe.[4][5][6]
A very interesting documentary about the Universe.
Record-Breaking Space Discoveries of 2016!
2016 was a lot of things, but for astronomers, it meant the discovery of some of the farthest, faintest, and youngest objects in the universe we’ve seen yet.
The radiant of the Quadrantids lies in the demoted constellation Quadrans Muralis.
The Mural Quadrant is an angle measuring device mounted on or built into a wall. Quadrans Muralis appears on some 19th-century star atlases between Hercules, Boötes and Draco, and different astronomers changed the stars from time to time.
In the early 1920’s, the International Astronomical Union divided up the sky into official constellations for consistency in star naming. 88 constellations remained, but over 30 historical constellations, including Quadrans Muralis, didn’t make the cut.
Most of the Quadrans Muralis stars are now within the boundaries of the official constellation Boötes, but the name of the meteor shower did not change.
Meteor showers are usually the residue that collects in the orbits of comets. Unlike most meteor showers’ parent bodies, the Quadrantids are associated with an asteroid—2003 EH1.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A galaxy cluster or cluster of galaxies is a structure that consists of anywhere from hundreds to thousands of galaxies bound together by gravity.[1] They are the largest known gravitationally bound structures in the universe and were the largest known structures in the universe until the 1980s when superclusters were discovered.[2] One of the key features of clusters is the intracluster medium or ICM. The ICM consists of heated gas between the galaxies and has a temperature on the order of 7-9 keV. Galaxy clusters should not be confused with star clusters such as open clusters, which are structures of stars within galaxies, as well as globular clusters, which typically orbit galaxies. Small aggregates of galaxies are referred to as groups of galaxies rather than clusters of galaxies. The groups and clusters can themselves cluster together to formsuperclusters.
If you can dream it, you can do it
Walt Disney (1901- 1966)
Ask Ethan #103: Have We Solved The Black Hole Information Paradox?
“How is Hawking’s theory of black holes storing information on the shell of an event horizon different than what Susskind said decades ago about black holes storing information on the shell of an event horizon? Did Hawking just pull a Steve Jobs and proclaim something new that Android figured out years before? Or is this actually new stuff?”
Stephen Hawking is claiming that the black hole information paradox has now been resolved, with the information encoded on the event horizon and then onto the outgoing radiation via a new mechanism that he’ll detail in a paper due out next month, along with collaborators Malcom Perry and Andrew Strominger. Only, that’s not really what’s happening here. While he does have a new idea and there is a paper coming out, its contents do not solve the information paradox, but merely provide a hypothesis as to how it may be solved in the future.
How Close Are We To Nuclear Fusion?
“Naysayers love to claim that nuclear fusion is always decades away — and always will be — but the reality is we’ve moved ever closer to the breakeven point and solved a large number of technical challenges over the past twenty years. Nuclear fusion, if we ever achieve it on a large scale, will usher in a new era for humanity: one where energy conservation is a thing of the past, as the fuel for our heart’s desires will literally be without limits.”
The ultimate dream when it comes to clean, green, safe, abundant energy is nuclear fusion. The same process that powers the core of the Sun could also power everything on Earth millions of times over, if only we could figure out how to reach that breakeven point. Right now, we have three different candidates for doing so: inertial confinement, magnetic confinement, and magnetized target fusion. Recent advances have all three looking promising in various ways, making one wonder why we don’t spend more resources towards achieving the holy grail of energy.
A wormhole, or Einstein-Rosen Bridge, is a hypothetical topological feature that would fundamentally be a shortcut connecting two separate points in spacetime that could connect extremely far distances such as a billion light years or more, short distances, such as a few feet, different universes, and in theory, different points in time. A wormhole is much like a tunnel with two ends, each in separate points in spacetime.
For a simplified notion of a wormhole, space can be visualized as a two-dimensional (2D) surface. In this case, a wormhole would appear as a hole in that surface, lead into a 3D tube (the inside surface of a cylinder), then re-emerge at another location on the 2D surface with a hole similar to the entrance. An actual wormhole would be analogous to this, but with the spatial dimensions raised by one. For example, instead of circular holes on a 2D plane, the entry and exit points could be visualized as spheres in 3D space.