Smithsonian’s National Air & Space Museum Udvar-Hazy Center in Chantilly, Virginia, offers the unique sight of a complete Mercury spacecraft. Many of these spacecraft are available for viewing all over the United States, but this one is special because it did not fly.
During the course of a Mercury flight, several parts of the spacecraft are jettisoned and not recovered, including the retro package. This piece of equipment is visible here in my photos as the striped metal object strapped to the bottom of the heat shield. This small cluster of solid rocket motors was responsible for the safe return of the astronaut from space, making just enough thrust to change the shape of the orbit so that it would meet the atmosphere and use aerobraking for a ballistic reentry.
If this package had not fired properly, the astronaut would be faced with the dire situation of being stuck in orbit. Fortunately, this never happened in real life, but it was captured in the fanciful novel “Marooned” by Martin Cardin, in which a NASA astronaut was stranded on orbit after his retro rockets failed. When the book was released in 1964, it was so influential that it actually changed procedures for Mercury’s follow on program Project Gemini, adding more redundancy to the spacecraft’s reentry flight profile.
Alan Shepard, the first American in space and later Apollo 14 moonwalker, didn’t fail to notice that there was a leftover spacecraft at the end of the Mercury program. He lobbied for a second Mercury flight in this ship, speaking personally to both NASA Administrator James Webb and President John Kennedy about this flight. He told them his idea of an “open ended” mission in which they would keep him in orbit indefinitely until there was a malfunction or consumables began to run out. Webb stated (and Kennedy agreed) that it was more important to shelve the Mercury spacecraft in order to jump start the more capable Gemini Program. Thus, we now have this whole Mercury on display for future generations to appreciate.
The United Engineering Center, 345 E. 47th Street, New York City, was headquarters to the major engineering United States engineering societies (ASCE, AIME, ASME, IEEE, AIChE and the UEF) from 1960 to 1997. In 1997, the building was sold to Donald Trump and demolished in 1998 to make room for the Trump World Tower, a 72 floor residential tower.
Dawn O'Mara sitting on the edge of the front cockpit of a de Havilland DH82 Tiger Moth biplane, circa 1953.
Need help with your science homework? We’ve got you covered! Here are some out-of-this world (pun intended) resources for your science and space questions.
From questions like “Why does Saturn have rings?” to games that allow you to explore different galaxies, NASA Space Place has a variety of content for elementary-age kids, parents and anyone who likes science and technology topics.
Visit the NASA Space Place website or follow @NASASpacePlace on Twitter.
Targeting middle-school students and teachers, this NOAA and NASA partnership has games and useful information about weather and other Earth science subjects.
Visit the SciJinks website or follow @SciJinks on Twitter.
The NASA Education website includes an A-Z list of education opportunities that we offer throughout the year, as well as education programs, events and resources for both students and educators.
We have a diverse set of resources for multiple age groups:
Grades K-4
Grades 5-8
Grades 9-12
Higher Education
Informal Education
Visit the NASA Education website or follow @NASAedu on Twitter.
Want to get NASA Education materials for your classroom? Click HERE.
Although on different crews, astronauts Joe Acaba and Ricky Arnold - both former teachers - will work aboard the International Space Station. K-12 and higher education students and educators can do NASA STEM activities related to the station and its role in our journey to Mars. Click HERE for more.
Sally Ride EarthKAM
Also on the International Space Station, the Sally Ride EarthKAM @ Space Camp allows students to program a digital camera on board the space station to photograph a variety of geographical targets for study in the classroom.
Registration is now open until Sept. 25 for the Sept. 26-30 mission. Click HERE for more.
NASA eClips™ are short, relevant educational video segments. These videos inspire and engage students, helping them see real world connections by exploring current applications of science, technology, engineering and mathematics, or STEM, topics. The programs are produced for targeted audiences: K-5, 6-8, 9-12 and the general public.
The Space Operations Learning Center teaches school-aged students the basic concepts of space operations using the web to present this educational content in a fun and engaging way for all grade levels. With fourteen modules, there’s lots to explore for all ages.
The Mars Fun Zone is a compilation of Red Planet-related materials that engage the explorer inside every kid through activities, games, and educational moments.
Frequent flyer or getting ready to earn your first set of wings? From children’s books for story time to interactive flight games, we’ve got Aeronautics activities for students of all ages that are sure to inspire future scientists, mathematicians and engineers.
On Pinterest? We have a board that highlights NASA science, technology, engineering and math (STEM) lessons, activities, tools and resources for teachers, educators and parents.
Check it out here: https://www.pinterest.com/nasa/nasa-for-educators/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
No! Seriously. You cannot.
But I saw it in the movies or in the cartoon (C’mon bro, cartoon?). The gimmick that movies bring in, phew! They sometime just butcher the science out of things for entertainment.
Remember Oobleck, the non- newtonian fluid that hardens on the application of force?
Well, Quick Sand ( also a non-newtonian fluid ) liqueifies on the application of force.
Quicksand itself is harmless: a human or animal is unlikely to sink entirely into quicksand at all due to the higher density of the fluid ( It has twice the density of human )
It’s the same reason why a ship although made up of steel, yet stays afloat at sea. “The heavier the fluid, the better things float.”
But for the ship to sink it has to push aside some water, which has nowhere to go but up. So it’s a question: does the ship ‘want’ to sink more than the water ‘wants’ not to rise?
It turns out that just depends on whether the ship weighs more or less than the amount of water that would fill the same space. Real ships have lots of air inside, so they weigh less than the same volume of water, so they float.
That being said, it is no joke that people have lost their lives in Quicksand. But the rationale for their death is often misattributed.
It’s not the quicksand that will kill you, but the sunlight, dehydration, carnivores, omnivores, hypothermia or tides that will.
It takes a feat of strength to get out of one though.
A study published in Nature found that the force needed to pull your foot out of quicksand at a speed of one centimentre per second would be equivalent to lifting a medium-sized car (in air).
Well, who would be a better person to explain it than Bear Grylls himself.
Getting out of a Quicksand with Bear Grylls.
Have you ever wondered just how detergents are able to get grease and oil off a surface? This simple example demonstrates one method. In the top image, a drop of oil sits attached to a solid surface; both are immersed in water. An eyedropper injects a surfactant chemical near the oil drop. This lowers the surface tension of the surrounding water and allows the mixture to better wet the solid. That eats away at the oil drop’s contact with the surface. It takes awhile – the middle animation is drastically sped up – but the oil droplet maintains less and less contact with the surface as the surfactant works. Eventually, in the bottom image, most of the oil drop detaches from the surface and floats away. (Image credits: C. Kalelkar and A. Sahni, source)
The three stages before an exam. 😂
Like this book but… I wish I could read the formulas without a magnifying glass! The formulas, for whatever reason, on a Kindle (I have Kindle Keyboard and Kindle Fire HD) are too small to read. I can use a magnifying glass on the Kindle Keyboard, with the Fire some are still unreadable. Go to Amazon
Well worth the money I bought the first edition, and was impressed. As a US Marine Radar Technician and engineering student, I find that so many of us in the electronics fields either never built a solid foundation in the basics of electronics, or have forgotten a lot of the fundamentals. This is a great book for correcting either of those issues. Go to Amazon
Great learning tool I got the book as a basic introduction to electrical engineering. I have messed around with some simple wireing in the past but never really had any idea what I was doing. This book was great, it had enough in depth explanation to cover my ignorance, and enough technical stuff that I had to scratch my head and re-read it a few times. I loved this book and would absolutely reccomend it to anyone looking at entering the field of electrical engineering, or even if you are just interested in becomming a little more familiar with the technical world we live in. Go to Amazon
Thank you. Thank you. Go to Amazon
Not quite for the total beginner! Grammatical and punctuation errors abound! Circuit diagrams unreadable. This is a Kindle review… Go to Amazon
Really a good interesting book Really a good interesting book. May be a good addendum to your text books to help understand the concepts better. Definitely not a text book or by any means all inclusive, but the author has a way of explaining the fundamentals in laymen’s terms, that anyone can understand. That alone is worth the price of the book and I can count the number of EE books that do that on one hand… er finger. Go to Amazon
Oh it is so informative Darren Ashby really give me so many answers to the mysteries that have always baffled and stress me out with electronics and circuits. After just enough electronics training to create confusion, the recent re-pursuit of an electronics degree feels as if it were catered to with this book. Darren Ashby goes into not only speaking of Boolean Logic in the chapter I have just finished, but he also gives the print of how the actual logic gate looks with hardware!! Its like omg! guys, omg! The thought and explanitions in this book is a great un-confuse-er with electronic circuits…….A great read Go to Amazon
Very Informative Book! This one probably one the most well written books for Electrical Engineering I have ever read. Not only would this be helpful for electrical engineers but general electricians as well. Go to Amazon
Four Stars tell a lot of the product . Entertaining style, intuitive, visual approach helps in understanding abstract concepts. Two Stars Five Stars This book and this author, I will say, … Excellent Too basic for any engineer and too vague for a beginner Five Stars Very pleased.
“The 2017 Nobel Prize in Physics may have gone to three individuals who made an outstanding contribution to the scientific enterprise, but it’s a story about so much more than that. It’s about all the men and women over more than 100 years who’ve contributed, theoretically and experimentally and observationally, to our understanding of the precise workings of the Universe. Science is much more than a method; it’s the accumulated knowledge of the entire human enterprise, gathered and synthesized together for the betterment of everyone. While the most prestigious award has now gone to gravitational waves, the science of this phenomenon is only in its earliest stages. The best is yet to come.”
It’s official at long last: the 2017 Nobel Prize in Physics has been awarded to three individuals most responsible for the development and eventual direct detection of gravitational waves. Congratulations to Rainer Weiss, Kip Thorne, and Barry Barish, whose respective contributions to the experimental setup of gravitational wave detectors, theoretical predictions about which astrophysical events produce which signals, and the design-and-building of the modern LIGO interferometers helped make it all possible. The story of directly detecting gravitational waves is so much more, however, than the story of just these three individuals, or even than the story of their collaborators. Instead, it’s the ultimate culmination of a century of theoretical, experimental, and instrumentational work, dating back to Einstein himself. It’s a story that includes physics titans Howard Robertson, Richard Feynman, and Joseph Weber. It includes Russell Hulse and Joseph Taylor, who won a Nobel decades earlier for the indirect detection of gravitational waves. And it’s the story of over 1,000 men and women who contributed to LIGO and VIRGO, bringing us into the era of gravitational wave astronomy.
The 2017 Nobel Prize in Physics may only go to three individuals, but it’s the ultimate fusion of theory and experiment. And yes, the best is yet to come!
Titanic’s massive engines before install at Harland and Wolff. Standing nearly 3 stories tall, and it’s not even fully assembled yet. Man on right for scale.
“Imagine the earth to be a bag of rubber filled with water, a small quantity of which is periodically forced in and out of the same by means of a reciprocating pump, as illustrated. If the strokes of the latter are effected in intervals of more than one hour and forty-eight minutes, sufficient for the transmission of the impulse thru the whole mass, the entire bag will expand and contract and corresponding movements will be imparted to pressure gauges or movable pistons with the same intensity, irrespective of distance. By working the pump faster, shorter waves will be produced which, on reaching the opposite end of the bag, may be reflected and give rise to stationary nodes and loops, but in any case, the fluid being incompressible, its enclosure perfectly elastic, and the frequency of oscillations not very high, the energy will be economically transmitted and very little power consumed so long as no work is done in the receivers. This is a crude but correct representation of my wireless system in which, however, I resort to various refinements. Thus, for instance, the pump is made part of a resonant system of great inertia, enormously magnifying the force of the imprest impulses. The receiving devices are similarly conditioned and in this manner the amount of energy collected in them vastly increased.“
“Famous Scientific Illusions.” Electrical Experimenter, February, 1919.