Charon from a different angle
via reddit
An Adaptable Species: Part 2 of 4 (Part 1) Episode 11: The Immortals, Cosmos: A SpaceTime Odyssey
Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Scientists onboard study the life cycle of stars, planets (including Pluto’s atmosphere), the area around black holes and complex molecules in space.
Heading South
Once each year our flying observatory, SOFIA, its team and instruments travel to the Southern Hemisphere to Christchurch, New Zealand. From there the team studies stars and other objects that cannot be seen while flying in the Northern Hemisphere.
What We Study
We often study star formation in our Milky Way Galaxy. But from the Southern Hemisphere we can also study the lifecycle of stars in two other galaxies called the Magellanic Clouds. The Magallenic Clouds have different materials in them, which changes how stars form in these galaxies. Scientists are studying these differences to better understand how the first stars in our universe formed.
Home Away from Home
The observatory and its team use the National Science Foundation’s U.S. Antarctic Program facility at Christchurch International Airport. The Antarctic program’s off-season is June and July, so it’s an ideal time for us to use these facilities.
Another Blast of Winter
The Southern Hemisphere’s seasons are opposite from our own. When we are operating from Christchurch in June and July, it’s winter. This means that the nights are very long – ideal for our nighttime observing flights, which last approximately 10 hours.
Light Show
These observations often bring us so far south that the team onboard can see the Southern Lights, also called the Aurora Australis. This is the Southern Hemisphere equivalent of the Northern Lights, or Aurora Borealis, visible near the North Pole. Auroras are caused by particles from space hitting the atmosphere near Earth’s magnetic poles. Our scientists onboard SOFIA don’t study the aurora, but they do enjoy the view.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Incredible “EPIC” View Of The Moon Passing In Front Of The Earth
This is real, folks. It is not a computer-generated animation. NASA’s DSCOVR (Deep Space Climate Observatory) satellite took these incredible shots on July 16 using its Earth-facing EPIC camera from its vantage point between the Earth and the Sun, a million miles away!
DSCOVR sits at what’s known as the L1 Lagrangian point, where the gravitational pull of the Earth and Sun balance out in such a way that satellites positioned there can remain in stable orbit while using minimal energy:
Image: NASA/NOAA
This view of the far side of the Moon reminds us that it is anything but dark. The Moon is tidally locked, meaning that we see the same face all the time, but the sun regularly shines on the side that we don’t see (we’re just seeing a new or crescent moon when that happens). The far side also lacks the dark plains, or maria, that texture the Earth-facing side, made of basalt laid down by ancient lunar lava flows, reminding us that our lunar satellite has a complex geologic history:
Our Space Launch System (SLS) is an advanced launch vehicle for exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars!
A launch system required to carry humans faster and farther than ever before will need a powerful engine, aka the RS-25 engine. This engine makes a modern race car or jet engine look like a wind-up toy. With the ability to produce 512,000 pounds of trust, the RS-25 engine will produce 10% more thrust than the Saturn V rockets that launched astronauts on journeys to the moon!
Another consideration for using these engines for future spaceflight was that 16 of them already existed from the shuttle program. Using a high-performance engine that already existed gave us a considerable boost in developing its next rocket for space exploration.
Once ready, four RS-25 engines will power the core stage of our SLS into deep space and Mars.
I've had lots of blogs in the past, but this one I'm actualy excited to share with people.
68 posts