The Galaxy Is Perfect

The Galaxy Is Perfect
The Galaxy Is Perfect
The Galaxy Is Perfect
The Galaxy Is Perfect
The Galaxy Is Perfect
The Galaxy Is Perfect
The Galaxy Is Perfect

The galaxy is perfect

More Posts from Ocrim1967 and Others

6 years ago

Hilarious Animal Snapchats That Are Impossible Not To Laugh At

Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
Hilarious Animal Snapchats That Are Impossible Not To Laugh At
6 years ago

All cats are beautiful 🐱❤️

All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

6 years ago
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO
5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO

5 Things We Still Don’t Know About Black Holes (And 2 We Do) After LIGO

“1.) How small are the lowest-mass black holes?

LIGO has yet to detect any low-amplitude binaries, providing no information about this population.”

Beginning in 2015, the LIGO detectors began to see robust, bona fide signals of gravitational waves. Of the 11 signals detected to date, 10 of them correspond to black hole-black hole mergers. Gravitational wave astronomy has not only opened up a whole new eye on the Universe, it’s opened up a whole new world as far as our understanding of black holes go. With these 10 mergers under our belt, and an upgraded data run expected later this year, it’s time to take stock of what we don’t yet know, and how we hope to get there. 

Here’s where we are today in our understanding of LIGO’s black holes.

6 years ago
Neptune ♆
Neptune ♆
Neptune ♆
Neptune ♆
Neptune ♆
Neptune ♆
Neptune ♆
Neptune ♆
Neptune ♆
Neptune ♆

Neptune ♆

On this day in 1846 was discovered the planet Neptune.

The ice giant Neptune was the first planet located through mathematical predictions rather than through regular observations of the sky. (Galileo had recorded it as a fixed star during observations with his small telescope in 1612 and 1613.) When Uranus didn’t travel exactly as astronomers expected it to, a French mathematician, Urbain Joseph Le Verrier, proposed the position and mass of another as yet unknown planet that could cause the observed changes to Uranus’ orbit. After being ignored by French astronomers, Le Verrier sent his predictions to Johann Gottfried Galle at the Berlin Observatory, who found Neptune on his first night of searching in 1846. Seventeen days later, its largest moon, Triton, was also discovered.

Neptune is invisible to the naked eye because of its extreme distance from Earth. Interestingly, the highly eccentric orbit of the dwarf planet Pluto brings Pluto inside Neptune’s orbit for a 20-year period out of every 248 Earth years. Pluto can never crash into Neptune, though, because for every three laps Neptune takes around the Sun, Pluto makes two. This repeating pattern prevents close approaches of the two bodies.

Nearly 4.5 billion kilometers (2.8 billion miles) from the Sun, Neptune orbits the Sun once every 165 years. 

Uranus’ blue-green color is also the result of atmospheric methane, but Neptune is a more vivid, brighter blue, so there must be an unknown component that causes the more intense color. 

Despite its great distance and low energy input from the Sun, Neptune’s winds can be three times stronger than Jupiter’s and nine times stronger than Earth’s.

Winds on Neptune travel faster than the speed of sound.

In 1989, Voyager 2 tracked a large, oval-shaped, dark storm in Neptune’s southern hemisphere. This “Great Dark Spot” was large enough to contain the entire Earth.

Neptune has five known rings. Voyager 2’s observations confirmed that these unusual rings are not uniform but have four thick regions (clumps of dust) called arcs. The rings are thought to be relatively young and short-lived.

Neptune has 14 known moons, six of which were discovered by Voyager 2.

Triton, Neptune’s largest moon, orbits the planet in the opposite direction compared with the rest of the moons, suggesting that it may have been captured by Neptune in the distant past. 

To know more about the planet Neptune click here and here.

Images credit: NASA/JPL- Caltech (some images processed by Kevin M. Gill)

5 years ago
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse
7 Fascinating Facts About 2019’s Only Total Solar Eclipse

7 Fascinating Facts About 2019’s Only Total Solar Eclipse

“3.) Optimally situated viewers will experience 4 minutes and 33 seconds of totality. With Earth near aphelion and the Moon near perigee, it’s nearly twice the duration of 2017’s eclipse.”

On July 2, 2019, the world will experience a total solar eclipse: the only one of the year. Unlike the famous 2017 solar eclipse which spanned the continental United States, this year’s total solar eclipse occurs almost exactly coincident with both lunar perigee, where the Moon is closest to Earth, and solar aphelion, where the Sun is at its farthest point from Earth. July 2nd is just 2 days before our annual aphelion and 3 days before our monthly perigee, meaning that we’ll get 4 minutes and 33 seconds of totality during maximum eclipse: nearly twice as long as 2017′s maximum totality and the longest total solar eclipse we’ll experience until 2027.

What will we learn? What will we see? And how can you observe it from anywhere in the world? Find out these and more amazing facts before the eclipse passes!

6 years ago
Cosmic Microwave Background

cosmic microwave background

The cosmic microwave background (CMB) is electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology. In older literature, the CMB is also variously known as cosmic microwave background radiation (CMBR) or “relic radiation”. The CMB is a faint cosmic background radiation filling all space that is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination.

With a traditional optical telescope, the space between stars and galaxies (the background) is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost isotropic, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1964 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

image

The discovery of CMB is landmark evidence of the Big Bang origin of the universe. When the universe was young, before the formation of stars and planets, it was denser, much hotter, and filled with a uniform glow from a white-hot fog of hydrogen plasma. As the universe expanded, both the plasma and the radiation filling it grew cooler. When the universe cooled enough, protons and electrons combined to form neutral hydrogen atoms. Unlike the uncombined protons and electrons, these newly conceived atoms could not absorb the thermal radiation, and so the universe became transparent instead of being an opaque fog. Cosmologists refer to the time period when neutral atoms first formed as the recombination epoch, and the event shortly afterwards when photons started to travel freely through space rather than constantly being scattered by electrons and protons in plasma is referred to as photon decoupling.

image

Basically, cosmic microwave background radiation is the fossil of light, resulting from a time when the Universe was hot and dense, only 380,000 years after the Big Bang.

Cosmic microwave background radiation is an electromagnetic radiation that fills the entire universe, whose spectrum is that of a blackbody at a temperature of 2.725 kelvin.

image

Cosmic microwave background radiation, along with the spacing from galaxies and the abundance of light elements, is one of the strongest observational evidences of the Big Bang model, which describes the evolution of the universe. Penzias and Wilson received the Nobel Prize in Physics in 1978 for this discovery

source, source in portuguese

images credit:  Image credit: Institute of Astronomy / National Tsing Hua University/ NASA/ESA Hubble, wikipedia

6 years ago

10 Things: How to Photograph a Meteor Shower

Taking photographs of a meteor shower can be an exercise in patience as meteors streak across the sky quickly and unannounced, but with these tips – and some good fortune – you might be rewarded with a great photo.

These tips are meant for a DSLR or mirrorless camera, but some point-and-shoot cameras with manual controls could be used as well.

1. The Photo Op: Perseids Meteors

The Perseids are dusty remnants of comet 109P/Swift-Tuttle.

Earth passes through the comet’s invisible, multi-billion mile trail of tiny debris each year around August, creating a meteor shower of so-called “shooting stars” as the particles are vaporized in our atmosphere.

Perseid meteors already are streaking across the sky. This year’s shower peaks on a moonless summer night -from 4 pm on the 12th until 4 am on the 13th Eastern Daylight Time.

Read more on the Perseids ›

2. Get away from city lights and find a place with dark skies.

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure, a meteor streaks across the sky in Spruce Knob, West Virginia, during the 2016 Perseids meteor shower. Credit: NASA/Bill Ingalls

Too much light and it will be hard for your eyes to see fainter meteors, plus your image will get flooded with the glow of light. Turning down the brightness of the camera’s LCD screen will help keep your eyes adjusted to the dark. The peak of the 2018 Perseid meteor shower occurs just after the new moon, meaning a thin crescent will set long before the best viewing hours, leaving hopeful sky watchers with a moonlight-free sky!

3. Use a tripod.

10 Things: How To Photograph A Meteor Shower

In this ten-second exposure, a meteor streaks across the sky above Washington, DC during the 2015 Perseids meteor shower, Credit: NASA/Joel Kowsky

Meteor photography requires long exposures, and even the steadiest of hands can’t hold a camera still enough for a clear shot. Heavier tripods help reduce shaking caused by wind and footsteps, but even a lightweight tripod will do. You can always place sandbags against the feet of the tripod to add weight and stability. If you don’t have a tripod, you might be able to prop your camera on or up against something around you, but be sure to secure your camera.

4. Use a wide-angle lens.

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure taken with a circular fish-eye lens, a meteor streaks across the sky during the 2016 Perseids meteor shower as a photographer wipes moisture from the camera lens Friday, August 12, 2016 in Spruce Knob, West Virginia. Credit: NASA/Bill Ingalls

A wide-angle lens will capture more of the sky and give you a greater chance of capturing a meteor in your shot, while a zoom lens captures a smaller area of the sky. The odds of a meteor streaking past that small patch are lower.

5. Use a shutter release cable or the camera’s built-in timer.

10 Things: How To Photograph A Meteor Shower

Long exposures are not just for meteors. In this shot taken at Joshua Tree National Park, a hiker’s headlamp leaves a trail of light along a twilight path. Credit: National Park Service / Hannah Schwalbe

A tripod does a great job of reducing most of the shaking your camera experiences, but even the act of pressing the shutter button can blur your extended exposure. Using the self-timer gives you several seconds for any shaking from pressing the shutter button to stop before the shutter is released. A shutter release cable (without a self-timer) eliminates the need to touch the camera at all. And if your camera has wifi capabilities, you might be able to activate the shutter from a mobile device.

6. Manually focus your lens.

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure, a meteor streaks across the sky during the annual Perseids meteor shower Friday, August 12, 2016 in Spruce Knob, West Virginia. Credit: NASA/Bill Ingalls

At night, autofocus will struggle to find something on which to focus. Setting your focus to infinity will get you close, but chances are you’ll have to take some test images and do some fine tuning. With your camera on a tripod, take a test image lasting a few seconds, then use the camera’s screen to review the image. Zoom in to a star to see how sharp your focus is. If the stars look like fuzzy blobs, make tiny adjustments to the focus and take another test image.

Repeat until you are happy with the result.

If your camera has a zoomable electronic viewfinder or live view option, you might be able to zoom to a star and focus without having to take a test image.

7. Aim your camera.

10 Things: How To Photograph A Meteor Shower

The Perseids appear to radiate from the constellation Perseus, visible in the northern sky soon after sunset this time of year.

Even though we don’t know when or where a single meteor will appear, we do know the general area from which they’ll originate.

Meteor showers get their name based on the point in the sky from which they appear to radiate. In the case of the Perseids, during their peak, they appear to come from the direction of the constellation Perseus in the northern sky.

8. Calculate your exposure time.

10 Things: How To Photograph A Meteor Shower

In this 20-second exposure, a meteor lights up the sky over the top of a mountain ridge near Park City, Utah. Even though this image was captured during the annual Perseid meteor shower, this “shooting star” is probably not one of the Perseid meteors, which originate from material left behind by Comet Swift-Tuttle. Instead, it’s likely one of the many bits of rock and dust that randomly fall into the atmosphere on any given night. Credit: NASA/Bill Dunford

As Earth rotates, the stars in the sky appear to move, and if your shutter is open long enough, you might capture some of that movement. If you want to avoid apparent star movement, you can follow the 500 Rule. Take 500 and divide it by the length in millimeters of your lens. The resulting number is the length of time in seconds that you can keep your shutter open before seeing star trails. For example, if you’re using a 20 mm lens, 25 seconds (500 divided by 20) is the longest you can set your exposure time before star trails start to show up in your images.

9. Experiment!

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure photo, hikers find their way to the top of Spruce Knob in West Virginia to view the annual Perseids meteor shower, Friday, August 12, 2016. Credit: NASA/Bill Ingalls

Once you know the maximum exposure time, you can set your shutter priority to that length and let the camera calculate other settings for your first image. Depending on how the image turns out, you can manually adjust aperture (set it to a lower number if the image is too dark) and ISO (set it to a higher number if the image is too dark) to improve your next images. Changing only one setting at a time will give you a better understanding of how those changes affect your image.

10. Enjoy the show.

10 Things: How To Photograph A Meteor Shower

The crew of the International Space Station captured this Perseid meteor falling to Earth over China in 2011. Credit: NASA

With your camera settings adjusted, capturing that perfect photo is just a matter of time and luck. The highest rate of meteors visible per hour is in the hours after midnight and before dawn. Set up your camera next to a lounge chair or a blanket to witness the wonder of a meteor shower for yourself – and, with any luck, you’ll take home some envy-inducing shots, too!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?

Will we one day explore the worlds of our solar system? How long will this take?

We have a diversity of worlds in our solar system. Majestic places…

Imagine being able to visit Mars and its hostile climate. Imagine being able to visit the moons of Jupiter, observe Io: the volcanic moon, Europa, the frozen moon and Ganymede a moon larger than Mercury itself and that has its own magnetic field. Imagine visiting the moons of Saturn and maybe passing close to your rings… Imagine orbiting or floating through Titan’s atmosphere and closely watching its lakes and seas of methane and liquid ethane. Imagine getting to know the geysers of Enceladus, the valleys of Tethys, and the craters of Mimas… Imagine being able to see the moons of Uranus and have a view of Verona Rupes, the largest cliff of the solar system, located in Miranda. Imagine being able to be in Triton and to be able to observe the cold and azualdo Neptune in the sky…

  • trillphoenixx
    trillphoenixx liked this · 3 months ago
  • 824975
    824975 liked this · 1 year ago
  • moonlight-pisces
    moonlight-pisces liked this · 1 year ago
  • dispatchesfromthegutter
    dispatchesfromthegutter reblogged this · 1 year ago
  • krwawatana
    krwawatana reblogged this · 1 year ago
  • krwawatana
    krwawatana liked this · 1 year ago
  • shinigami6girl
    shinigami6girl reblogged this · 1 year ago
  • shinigami6girl
    shinigami6girl liked this · 1 year ago
  • pucciluv
    pucciluv reblogged this · 1 year ago
  • pucciluv
    pucciluv liked this · 1 year ago
  • kindasuperficial
    kindasuperficial reblogged this · 1 year ago
  • schlafloo
    schlafloo liked this · 1 year ago
  • trafmannoticge
    trafmannoticge liked this · 1 year ago
  • lyelydestuduc
    lyelydestuduc liked this · 1 year ago
  • optical-spectrum
    optical-spectrum reblogged this · 1 year ago
  • nittobluelll
    nittobluelll liked this · 1 year ago
  • mountainman266
    mountainman266 liked this · 1 year ago
  • womenrockmyworld
    womenrockmyworld liked this · 2 years ago
  • albino-big-foot
    albino-big-foot liked this · 2 years ago
  • searchingheart
    searchingheart reblogged this · 2 years ago
  • michaeltracanelli
    michaeltracanelli liked this · 2 years ago
  • dbcourious22
    dbcourious22 liked this · 2 years ago
  • yourwizard1969
    yourwizard1969 liked this · 2 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags