At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants

At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants

At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants

“By using the same instrument and leaving virtually no long-term gaps in the data, long-term, precise Doppler measurements finally became possible. A total of five brand new planets, one confirmation of a suggested planet, and three updated planets were announced in this latest study, bringing the total number of Jupiter-or-larger planets beyond the Jupiter-Sun distance up to 26. It shows us what we’d always hoped for: that our Solar System isn’t so unusual in the Universe; it’s just difficult to observe and detect planets like the ones we have.”

We’ve long suspected that there was nothing special about our Solar System; that Sun-like stars should have a wide variety of planets around them, including many of the types of worlds found orbiting our Sun. However, owing to the difficulty in making the kinds of measurements that would reveal them to us, our work has revealed a sample of planets biased towards two types of planets: the short-period worlds and the well-separated, high-mass worlds. Planets like Jupiter or Saturn were elusive for so long. But now, owing to research programs dedicated to monitoring nearby stars on decadal timescales, we’ve revealed a remarkable number of these worlds, many of which are now candidates for future direct imaging surveys.

The missing gas giants of the Universe, including worlds like the ones actually found orbiting our Sun, are finally within reach. Here’s how we’ve revealed them at last!

More Posts from Ocrim1967 and Others

6 years ago

I love flowers 💐❤️

image
image
image
image
image
image
image
image
image
image
image
image
image
image
6 years ago
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image
This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image

This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image

“For hundreds of years, humanity has expected black holes to exist. Over the course of all of our lifetimes, we’ve collected an entire suite of evidence that points not only to their existence, but to a fantastic agreement between their expected theoretical properties and what we’ve observed. But perhaps the most important prediction of all — that of the event horizon’s existence and properties — has never been directly tested before.

With simultaneous observations in hand from hundreds of telescopes across the globe, scientists have finished reconstructing an image, based on real data, of the largest black hole as seen from Earth: the 4 million solar mass monster at the center of the Milky Way. What we’ll see on April 10 will either further confirm General Relativity or cause us to rethink all that we believe about gravity. Eager with anticipation, the world now awaits.”

The Event Horizon Telescope will, on April 10 (tomorrow, at the time of this writing), release an image two years in the making: of the event horizon of the black hole at the Milky Way’s center. Many will look at this as the first definitive proof that black holes truly exist, but we mustn’t forget all the (overwhelming!) evidence we already have in hand. There is a ton that we already know about black holes that has been demonstrated observationally, and all of it is in spectacular agreement with what we theoretically expect.

On the eve of the Event Horizon Telescope’s big announcement, take some time to get a little perspective, and learn what we already know about black holes!

6 years ago

Make Sure You Observe the Moon on October 20

On Saturday, October 20, NASA will host the ninth annual International Observe the Moon Night. One day each year, everyone on Earth is invited to observe and learn about the Moon together, and to celebrate the cultural and personal connections we all have with our nearest celestial neighbor.

There are a number of ways to celebrate. You can attend an event, host your own, or just look up! Here are 10 of our favorite ways to observe the Moon:

1. Look up

image

Image credit: NASA’s Scientific Visualization Studio/Ernie Wright

The simplest way to observe the Moon is simply to look up. The Moon is the brightest object in our night sky, the second brightest in our daytime sky and can be seen from all around the world — from the remote and dark Atacama Desert in Chile to the brightly lit streets of Tokyo. On October 20, the near side of the Moon, or the side facing Earth, will be about 80 percent illuminated, rising in the early evening.

See the Moon phase on October 20 or any other day of the year!

2. Peer through a telescope or binoculars

image

The Moon and Venus are great targets for binoculars. Image Credit: NASA/Bill Dunford

With some magnification help, you will be able to focus in on specific features on the Moon, like the Sea of Tranquility or the bright Copernicus Crater. Download our Moon maps for some guided observing on Saturday.

3. Photograph the Moon

image

Image credit: NASA/GSFC/ASU

Our Lunar Reconnaissance Orbiter (LRO) has taken more than 20 million images of the Moon, mapping it in stunning detail. You can see featured, captioned images on LRO’s camera website, like the one of Montes Carpatus seen here. And, of course, you can take your own photos from Earth. Check out our tips on photographing the Moon!

4. Take a virtual field trip

image

Image credit: NASA/JPL-Caltech

Plan a lunar hike with Moontrek. Moontrek is an interactive Moon map made using NASA data from our lunar spacecraft. Fly anywhere you’d like on the Moon, calculate the distance or the elevation of a mountain to plan your lunar hike, or layer attributes of the lunar surface and temperature. If you have a virtual reality headset, you can experience Moontrek in 3D.

5. Touch the topography

image

Image credit: NASA GSFC/Jacob Richardson

Observe the Moon through touch! If you have access to a 3D printer, you can peruse our library of 3D models and lunar landscapes. This model of the Apollo 11 landing site created by NASA scientist Jacob Richardson, is derived from LRO’s topographic data. Near the center, you can actually feel a tiny dot where astronauts Neil Armstrong and Buzz Aldrin left the Lunar Descent Module.

6. Make Moon art

image

Image credit: LPI/Andy Shaner

Enjoy artwork of the Moon and create your own! For messy fun, lunar crater paintings demonstrate how the lunar surface changes due to consistent meteorite impacts.

7. Relax on your couch

image

Image credit: NASA’s Scientific Visualization Studio/Ernie Wright

There are many movies that feature our nearest neighbor, from A Voyage to the Moon by George Melies, to Apollo 13, to the newly released First Man. You can also spend your evening with our lunar playlist on YouTube or this video gallery, learning about the Moon’s role in eclipses, looking at the Moon phases from the far side, and seeing the latest science portrayed in super high resolution. You’ll impress all of your friends with your knowledge of supermoons.

8. Listen to the Moon

Video credit: NASA’s Scientific Visualization Studio/Ernie Wright

Make a playlist of Moon songs. For inspiration, check out this list of lunar tunes. We also recommend LRO’s official music video, The Moon and More, featuring Javier Colon, season 1 winner of NBC’s “The Voice.” Or you can just watch this video featuring “Clair de Lune,” by French composer Claude Debussy, over and over.

9. See the Moon through the eyes of a spacecraft

image

Image credit: NASA/GSFC/MIT

Visible light is just one tool that we use to explore our universe. Our spacecraft contain many different types of instruments to analyze the Moon’s composition and environment. Review the Moon’s gravity field with data from the GRAIL spacecraft or decipher the maze of this slope map from the laser altimeter onboard LRO. This collection from LRO features images of the Moon’s temperature and topography. You can learn more about our different missions to explore the Moon here.

10. Continue your observations throughout the year

image

Image credit: NASA’s Scientific Visualization Studio/Ernie Wright

An important part of observing the Moon is to see how it changes over time. International Observe the Moon Night is the perfect time to start a Moon journal. See how the shape of the Moon changes over the course of a month, and keep track of where and what time it rises and sets. Observe the Moon all year long with these tools and techniques!

However you choose to celebrate International Observe the Moon Night, we want to hear about it! Register your participation and share your experiences on social media with #ObserveTheMoon or on our Facebook page. Happy observing!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

4 years ago
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill
Recommended Resource: The Names Of God By Ken Hemphill

Recommended Resource: The Names of God by Ken Hemphill

6 years ago
Cosmic Microwave Background

cosmic microwave background

The cosmic microwave background (CMB) is electromagnetic radiation as a remnant from an early stage of the universe in Big Bang cosmology. In older literature, the CMB is also variously known as cosmic microwave background radiation (CMBR) or “relic radiation”. The CMB is a faint cosmic background radiation filling all space that is an important source of data on the early universe because it is the oldest electromagnetic radiation in the universe, dating to the epoch of recombination.

With a traditional optical telescope, the space between stars and galaxies (the background) is completely dark. However, a sufficiently sensitive radio telescope shows a faint background noise, or glow, almost isotropic, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1964 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize in Physics.

image

The discovery of CMB is landmark evidence of the Big Bang origin of the universe. When the universe was young, before the formation of stars and planets, it was denser, much hotter, and filled with a uniform glow from a white-hot fog of hydrogen plasma. As the universe expanded, both the plasma and the radiation filling it grew cooler. When the universe cooled enough, protons and electrons combined to form neutral hydrogen atoms. Unlike the uncombined protons and electrons, these newly conceived atoms could not absorb the thermal radiation, and so the universe became transparent instead of being an opaque fog. Cosmologists refer to the time period when neutral atoms first formed as the recombination epoch, and the event shortly afterwards when photons started to travel freely through space rather than constantly being scattered by electrons and protons in plasma is referred to as photon decoupling.

image

Basically, cosmic microwave background radiation is the fossil of light, resulting from a time when the Universe was hot and dense, only 380,000 years after the Big Bang.

Cosmic microwave background radiation is an electromagnetic radiation that fills the entire universe, whose spectrum is that of a blackbody at a temperature of 2.725 kelvin.

image

Cosmic microwave background radiation, along with the spacing from galaxies and the abundance of light elements, is one of the strongest observational evidences of the Big Bang model, which describes the evolution of the universe. Penzias and Wilson received the Nobel Prize in Physics in 1978 for this discovery

source, source in portuguese

images credit:  Image credit: Institute of Astronomy / National Tsing Hua University/ NASA/ESA Hubble, wikipedia

6 years ago

The Kepler space telescope has shown us our galaxy is teeming with planets — and other surprises

image

The Kepler space telescope has taught us there are so many planets out there, they outnumber even the stars. Here is a sample of these wondrous, weird and unexpected worlds (and other spectacular objects in space) that Kepler has spotted with its “eye” opened to the heavens.

Kepler has found that double sunsets really do exist.

image

Yes, Star Wars fans, the double sunset on Tatooine could really exist. Kepler discovered the first known planet around a double-star system, though Kepler-16b is probably a gas giant without a solid surface.

Kepler has gotten us closer to finding planets like Earth.

image

Nope. Kepler hasn’t found Earth 2.0, and that wasn’t the job it set out to do. But in its survey of hundreds of thousands of stars, Kepler found planets near in size to Earth orbiting at a distance where liquid water could pool on the surface. One of them, Kepler-62f, is about 40 percent bigger than Earth and is likely rocky. Is there life on any of them? We still have a lot more to learn.

This sizzling world is so hot iron would melt!

image

One of Kepler’s early discoveries was the small, scorched world of Kepler-10b. With a year that lasts less than an Earth day and density high enough to imply it’s probably made of iron and rock, this “lava world” gave us the first solid evidence of a rocky planet outside our solar system. 

If it’s not an alien megastructure, what is this oddly fluctuating star?

image

When Kepler detected the oddly fluctuating light from “Tabby’s Star,” the internet lit up with speculation of an alien megastructure. Astronomers have concluded it’s probably an orbiting dust cloud.  

Kepler caught this dead star cannibalizing its planet.

image

What happens when a solar system dies? Kepler discovered a white dwarf, the compact corpse of a star in the process of vaporizing a planet.

These Kepler planets are more than twice the age of our Sun!

image

The five small planets in Kepler-444 were born 11 billion years ago when our galaxy was in its youth. Imagine what these ancient planets look like after all that time?

Kepler found a supernova exploding at breakneck speed.

image

This premier planet hunter has also been watching stars explode. Kepler recorded a sped-up version of a supernova called a “fast-evolving luminescent transit” that reached its peak brightness at breakneck speed. It was caused by a star spewing out a dense shell of gas that lit up when hit with the shockwave from the blast. 

* All images are artist illustrations.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago

What is Gravitational Lensing?

A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein’s general theory of relativity.

image

This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. The scale has been greatly exaggerated; in reality, the distant galaxy is much further away and much smaller. Credit: NASA, ESA, L. Calcada

There are three classes of gravitational lensing:

1° Strong lensing: where there are easily visible distortions such as the formation of Einstein rings, arcs, and multiple images.

image

Einstein ring. credit: NASA/ESA&Hubble

2° Weak lensing: where the distortions of background sources are much smaller and can only be detected by analyzing large numbers of sources in a statistical way to find coherent distortions of only a few percent. The lensing shows up statistically as a preferred stretching of the background objects perpendicular to the direction to the centre of the lens. By measuring the shapes and orientations of large numbers of distant galaxies, their orientations can be averaged to measure the shear of the lensing field in any region. This, in turn, can be used to reconstruct the mass distribution in the area: in particular, the background distribution of dark matter can be reconstructed. Since galaxies are intrinsically elliptical and the weak gravitational lensing signal is small, a very large number of galaxies must be used in these surveys.

image

The effects of foreground galaxy cluster mass on background galaxy shapes. The upper left panel shows (projected onto the plane of the sky) the shapes of cluster members (in yellow) and background galaxies (in white), ignoring the effects of weak lensing. The lower right panel shows this same scenario, but includes the effects of lensing. The middle panel shows a 3-d representation of the positions of cluster and source galaxies, relative to the observer. Note that the background galaxies appear stretched tangentially around the cluster.

3° Microlensing: where no distortion in shape can be seen but the amount of light received from a background object changes in time. The lensing object may be stars in the Milky Way in one typical case, with the background source being stars in a remote galaxy, or, in another case, an even more distant quasar. The effect is small, such that (in the case of strong lensing) even a galaxy with a mass more than 100 billion times that of the Sun will produce multiple images separated by only a few arcseconds. Galaxy clusters can produce separations of several arcminutes. In both cases the galaxies and sources are quite distant, many hundreds of megaparsecs away from our Galaxy.

Gravitational lenses act equally on all kinds of electromagnetic radiation, not just visible light. Weak lensing effects are being studied for the cosmic microwave background as well as galaxy surveys. Strong lenses have been observed in radio and x-ray regimes as well. If a strong lens produces multiple images, there will be a relative time delay between two paths: that is, in one image the lensed object will be observed before the other image.

image

As an exoplanet passes in front of a more distant star, its gravity causes the trajectory of the starlight to bend, and in some cases results in a brief brightening of the background star as seen by a telescope. The artistic concept illustrates this effect. This phenomenon of gravitational microlensing enables scientists to search for exoplanets that are too distant and dark to detect any other way.Credits: NASA Ames/JPL-Caltech/T. Pyle

Explanation in terms of space–time curvature

image

Simulated gravitational lensing by black hole by: Earther

In general relativity, light follows the curvature of spacetime, hence when light passes around a massive object, it is bent. This means that the light from an object on the other side will be bent towards an observer’s eye, just like an ordinary lens. In General Relativity the speed of light depends on the gravitational potential (aka the metric) and this bending can be viewed as a consequence of the light traveling along a gradient in light speed. Light rays are the boundary between the future, the spacelike, and the past regions. The gravitational attraction can be viewed as the motion of undisturbed objects in a background curved geometry or alternatively as the response of objects to a force in a flat geometry.

image

A galaxy perfectly aligned with a supernova (supernova PS1-10afx) acts as a cosmic magnifying glass, making it appear 100 billion times more dazzling than our Sun. Image credit: Anupreeta More/Kavli IPMU.

To learn more, click here. 

6 years ago
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 

Working too hard, feeling overwhelmed by family responsibilities, or dealing with an ongoing challenge? 

Maybe it’s time to turn your attention back to yourself and to your own self-care. Although we often brush it aside, self-care is not optional if you want to be happy and healthy.

6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

6 years ago

Far from Westeros, a Three-Eyed Raven Helps NASA Find Its Way

Perched on the outside of the International Space Station is Raven—a technology-filled module that helps NASA develop a relative navigation capability, which is essentially autopilot for spacecraft. Raven has been testing technologies to enable autonomous rendezvous in space, which means the ability to approach things in space without human involvement, even from the ground.

image

Developed by the Satellite Servicing Projects Division (SSPD), our three-eyed Raven has visible, infrared, and Lidar sensors and uses those “eyes” to image and track visiting spacecraft as they come and go from the space station. Although Raven is all-seeing, it only sees all in black and white. Color images do not offer an advantage in the case of Raven and Restore-L, which also utilize infrared and Lidar sensors.

The data from Raven’s sensors is sent to its processor, which autonomously sends commands that swivel Raven on its gimbal, or pointing system. When Raven turns using this system, it is able to track a vehicle. While these maneuvers take place, NASA operators evaluate the movements and make adjustments to perfect the relative navigation system technologies. 

Far From Westeros, A Three-Eyed Raven Helps NASA Find Its Way

A few days ago, Raven completed its 21st observation of a spacecraft when it captured images of Northrop Grumman’s Cygnus vehicle delivering science investigations and supplies as part of its 11th commercial resupply services mission, including another SSPD payload called the Robotic External Leak Locator.

image

And just last month, Raven celebrated its two-year anniversary in space, marking the occasion with an observation of SpaceX’s Crew Dragon during the Demo-1 mission.

image

What is this—a spacecraft for ants??

While this shot of Dragon isn’t terribly impressive because of where the spacecraft docked on station, Raven has captured some truly great images when given the right viewing conditions. 

From SpaceX Dragon resupply mission observations…

image

…to Cygnus supply vehicles.

image

Raven has observed six unique types of spacecraft. 

It has also conducted a few observations not involving spacecraft, including the time it captured Hurricane Irma…

image

…or the time it captured station’s Dextre arm removing the Robotic Refueling Mission 3 payload, another mission developed by SSPD, from the Dragon spacecraft that delivered it to the orbiting laboratory.

image
image

Thus far, Raven has had a great, productive life aboard the station, but its work isn’t done yet! Whether it’s for Restore-L, which will robotically refuel a satellite, or getting humans to the Moon or Mars, the technologies Raven is demonstrating for a relative navigation system will support future NASA missions for decades to come.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

  • banderas-blog
    banderas-blog liked this · 4 years ago
  • volcanoesmeltmedown
    volcanoesmeltmedown liked this · 5 years ago
  • cosmicfeels
    cosmicfeels reblogged this · 6 years ago
  • newlifes-posts
    newlifes-posts liked this · 6 years ago
  • janicenewbold
    janicenewbold liked this · 6 years ago
  • cptnaz
    cptnaz liked this · 6 years ago
  • ludmila199
    ludmila199 liked this · 6 years ago
  • cormallen
    cormallen liked this · 6 years ago
  • knowledgeistreasure
    knowledgeistreasure reblogged this · 6 years ago
  • doggiescratch
    doggiescratch liked this · 6 years ago
  • matthewjopdyke
    matthewjopdyke liked this · 6 years ago
  • meio121
    meio121 liked this · 6 years ago
  • warmans-blog
    warmans-blog liked this · 6 years ago
  • astronomerosh19
    astronomerosh19 reblogged this · 6 years ago
  • astronomerosh19
    astronomerosh19 liked this · 6 years ago
  • new-great-age-of-discovery
    new-great-age-of-discovery reblogged this · 6 years ago
  • utpal-0746-ghosh
    utpal-0746-ghosh liked this · 6 years ago
  • xiapet
    xiapet liked this · 6 years ago
  • 5ccc45
    5ccc45 reblogged this · 6 years ago
  • ervdwulfartist
    ervdwulfartist reblogged this · 6 years ago
  • ervdwulfartist
    ervdwulfartist liked this · 6 years ago
  • anthropomorphicstellarremnants
    anthropomorphicstellarremnants reblogged this · 6 years ago
  • narcicious
    narcicious reblogged this · 6 years ago
  • narcicious
    narcicious liked this · 6 years ago
  • spacetimewithstuartgary
    spacetimewithstuartgary reblogged this · 6 years ago
  • sputnikscock420
    sputnikscock420 liked this · 6 years ago
  • tranechaser
    tranechaser liked this · 6 years ago
  • gnifrus
    gnifrus reblogged this · 6 years ago
  • gnifrus
    gnifrus liked this · 6 years ago
  • dancefrogsloth
    dancefrogsloth liked this · 6 years ago
  • balaustio
    balaustio liked this · 6 years ago
  • pearlyfeldspar
    pearlyfeldspar liked this · 6 years ago
  • ljamljam
    ljamljam liked this · 6 years ago
  • panda-of-the-trashh
    panda-of-the-trashh reblogged this · 6 years ago
  • panda-of-the-trashh
    panda-of-the-trashh liked this · 6 years ago
  • artpeanutbalk
    artpeanutbalk liked this · 6 years ago
  • jwmusiccreations
    jwmusiccreations liked this · 6 years ago
  • justspaceandcomputerthings
    justspaceandcomputerthings reblogged this · 6 years ago
  • dellpafalla
    dellpafalla reblogged this · 6 years ago
  • dellpafalla
    dellpafalla liked this · 6 years ago
  • banderas-blog
    banderas-blog reblogged this · 6 years ago
  • rando-person-man
    rando-person-man liked this · 6 years ago
  • pointlesslypointing
    pointlesslypointing reblogged this · 6 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags