Simply put, an exoplanet is a planet that orbits another star. That said, just because a planet orbits a star (like Earth) does not mean that it is automatically stable for life. The planet must be within the habitable zone, which is the area around a star in which water has the potential to be liquid…aka not so close that all the water would evaporate, and not too far away where all the water would freeze.
Recently, with the help of our Kepler spacecraft, scientists have discovered the most Earth-like exoplanet ever, Kepler-452b. Pretty cool! This chart shows 12 other exoplanet discoveries that are less than twice the size of Earth, and live in the habitable zone of their host star. Kepler-452b is special because all previous findings have orbited stars that are smaller and cooler than Earth’s.
You may be thinking, “Okay, so what? There’s an Earth-like planet that spins around a similar sized sun.” Well, Kepler-452b orbits its sun at nearly the same distance from its star as Earth does from our sun, which means that conditions on the plant could be similar to those here on Earth!
We can already guess your next question…”When are we going to Kepler-452b?!” Well, this planet is located in the constellation Cygnus which is 1,400 light-years away, so not anytime soon. However, our Kepler spacecraft continues to search for Earth-like exoplanets and gather important scientific information about them.
The moon occluding the sun during an eclipse. The fine threads you can see are part of the solar corona, and actually titanic spools of ultra-hot plasma, curling and bending with the sun’s complex magnetic field.
js
http://angelwolf92.deviantart.com/
The first two images are tesseracts and the second two are 4D spheres. 1 Dimension: in a universe with one dimension, particles can only move in a line so from left to right not up and down. _____________________________
2 Dimensions: this is made up of an infinite amount of 1D universe and particles would be able to to move in two dimensions, up down left and right. Now if there was an organism living in a 2 dimensional it would see things in 1 dimension just like we see things in 2 dimensions and our brain is what is able to interpret depth by using two eyes and our brain. When we hold our finger in front of our face and move it, we can see that it appears to have moved relative to the background. Our brains see this difference and this allows us to estimate how far away they are. In a 2D universe there would be no background as such to see the “finger” moving against so it would be seen in 1D although it’s impossible to visualise anything in 1 dimension.
3 Dimensions: we live in 3 spatial dimensions in our universe which is made up of an infinite amount of 2D universes. We see things in 2 dimensions. A common misconception is that time is the 4th dimension but it doesn’t really make sense because it is present in every spatial dimension.
4 Dimensions: this is almost impossible to try and visualise. There are some people who claim they can think in 4 and even more dimensions. Now, a 4th dimensional organism would see things in 3 dimensions. If they came to our universe then they would be seeing absolutely every line of every shape but it wouldn’t be possible for a 4D being to like in 3D, it would be like us living in 2D. Above I have some 4D shapes to give you an idea of how we can represent them. It’s better to watch the inks though.
http://youtu.be/-x4P65EKjt0 http://youtu.be/5BF-ygCbmD8
New Video! Reflection nebulae in a nutshell! Follow Evant Horizon for more astronomy posts!
One of the characteristics of successful scientists is having courage. Once you get your courage up and believe that you can do important problems, then you can. If you think you can’t, almost surely you are not going to. Courage is one of the things that Shannon had supremely. You have only to think of his major theorem. He wants to create a method of coding, but he doesn’t know what to do so he makes a random code. Then he is stuck. And then he asks the impossible question, “What would the average random code do?” He then proves that the average code is arbitrarily good, and that therefore there must be at least one good code. Who but a man of infinite courage could have dared to think those thoughts? That is the characteristic of great scientists; they have courage. They will go forward under incredible circumstances; they think and continue to think.
“You and Your Research,” Dr. Richard W. Hamming of Bell Labs (via ryanandmath)
Apollo 7 roars upward to space from Cape Canaveral, October 11, 1968.
Bill Nye reading mean tweets
I love space. I've been to space camp in Huntsville Alabama and I am planning on going every summer. I look forward to be an astronaut for nasa on the sls that is planned to be launched 2018. And the manned mission 2030. So yeah I won't let anything get in my way.
138 posts