The Year Is 1965, And Thanks To Telecommunication Engineers At Our Jet Propulsions Laboratory, The First

image

The year is 1965, and thanks to telecommunication engineers at our Jet Propulsions Laboratory, the first color version of one of our first Martian images had been created. Brought to life by hand coloring numbered strips, this image is a true blast to the past.

Fast forward to the 21st century and our Mars InSight mission now enables us to gawk at the Martian horizon as if we were there. InSight captured this panorama of its landing site on Dec. 9, 2018, the 14th Martian day, or sol, of its mission. The 290-degree perspective surveys the rim of the degraded crater InSight landed in and was made up of 30 photos stitched together.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Ocrim1967 and Others

6 years ago
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants

At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants

“By using the same instrument and leaving virtually no long-term gaps in the data, long-term, precise Doppler measurements finally became possible. A total of five brand new planets, one confirmation of a suggested planet, and three updated planets were announced in this latest study, bringing the total number of Jupiter-or-larger planets beyond the Jupiter-Sun distance up to 26. It shows us what we’d always hoped for: that our Solar System isn’t so unusual in the Universe; it’s just difficult to observe and detect planets like the ones we have.”

We’ve long suspected that there was nothing special about our Solar System; that Sun-like stars should have a wide variety of planets around them, including many of the types of worlds found orbiting our Sun. However, owing to the difficulty in making the kinds of measurements that would reveal them to us, our work has revealed a sample of planets biased towards two types of planets: the short-period worlds and the well-separated, high-mass worlds. Planets like Jupiter or Saturn were elusive for so long. But now, owing to research programs dedicated to monitoring nearby stars on decadal timescales, we’ve revealed a remarkable number of these worlds, many of which are now candidates for future direct imaging surveys.

The missing gas giants of the Universe, including worlds like the ones actually found orbiting our Sun, are finally within reach. Here’s how we’ve revealed them at last!

6 years ago

NASA’s New Planet Hunter Reveals a Sky Full of Stars

image

NASA’s newest planet-hunting satellite — the Transiting Exoplanet Survey Satellite, or TESS for short — has just released its first science image using all of its cameras to capture a huge swath of the sky! TESS is NASA’s next step in the search for planets outside our solar system, called exoplanets.

image

This spectacular image, the first released using all four of TESS’ cameras, shows the satellite’s full field of view. It captures parts of a dozen constellations, from Capricornus (the Sea Goat) to Pictor (the Painter’s Easel) — though it might be hard to find familiar constellations among all these stars! The image even includes the Large and Small Magellanic Clouds, our galaxy’s two largest companion galaxies.

The science community calls this image “first light,” but don’t let that fool you — TESS has been seeing light since it launched in April. A first light image like this is released to show off the first science-quality image taken after a mission starts collecting science data, highlighting a spacecraft’s capabilities.

image

TESS has been busy since it launched from NASA’s Kennedy Space Center in Cape Canaveral, Florida. First TESS needed to get into position, which required a push from the Moon. After nearly a month in space, the satellite passed about 5,000 miles from the Moon, whose gravity gave it the boost it needed to get into a special orbit that will keep it stable and maximize its view of the sky.

image

During those first few weeks, we also got a sneak peek of the sky through one of TESS’s four cameras. This test image captured over 200,000 stars in just two seconds! The spacecraft was pointed toward the constellation Centaurus when it snapped this picture. The bright star Beta Centauri is visible at the lower left edge, and the edge of the Coalsack Nebula is in the right upper corner.

image

After settling into orbit, scientists ran a number of checks on TESS, including testing its ability to collect a set of stable images over a prolonged period of time. TESS not only proved its ability to perform this task, it also got a surprise! A comet named C/2018 N1 passed through TESS’s cameras for about 17 hours in July.

The images show a treasure trove of cosmic curiosities. There are some stars whose brightness changes over time and asteroids visible as small moving white dots. You can even see an arc of stray light from Mars, which is located outside the image, moving across the screen.

image

Now that TESS has settled into orbit and has been thoroughly tested, it’s digging into its main mission of finding planets around other stars. How will it spot something as tiny and faint as a planet trillions of miles away? The trick is to look at the star!

So far, most of the exoplanets we’ve found were detected by looking for tiny dips in the brightness of their host stars. These dips are caused by the planet passing between us and its star – an event called a transit. Over its first two years, TESS will stare at 200,000 of the nearest and brightest stars in the sky to look for transits to identify stars with planets.

image

TESS will be building on the legacy of NASA’s Kepler spacecraft, which also used transits to find exoplanets. TESS’s target stars are about 10 times closer than Kepler’s, so they’ll tend to be brighter. Because they’re closer and brighter, TESS’s target stars will be ideal candidates for follow-up studies with current and future observatories.

image

TESS is challenging over 200,000 of our stellar neighbors to a staring contest! Who knows what new amazing planets we’ll find?

The TESS mission is led by MIT and came together with the help of many different partners. You can keep up with the latest from the TESS mission by following mission updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

4 years ago
Chandra Spots Extremely Long Cosmic Jet In Early Universe
Chandra Spots Extremely Long Cosmic Jet In Early Universe

Chandra Spots Extremely Long Cosmic Jet in Early Universe

http://www.sci-news.com/astronomy/chandra-extremely-long-cosmic-jet-early-universe-09436.html

6 years ago

Sixty Years of Exploration, Innovation, and Discovery!

image

Exactly sixty years ago today, we opened our doors for the first time. And since then, we have opened up a universe of discovery and innovation. 

There are so many achievements to celebrate from the past six decades, there’s no way we can go through all of them. If you want to dive deeper into our history of exploration, check out NASA: 60 Years and Counting. 

In the meantime, take a moonwalk down memory lane with us while we remember a few of our most important accomplishments from the past sixty years!

image

In 1958, President Eisenhower signed the National Aeronautics and Space Act, which effectively created our agency. We officially opened for business on October 1. 

To learn more about the start of our space program, watch our video: How It All Began. 

image

Alongside the U.S. Air Force, we implemented the X-15 hypersonic aircraft during the 1950s and 1960s to improve aircraft and spacecraft. 

The X-15 is capable of speeds exceeding Mach 6 (4,500 mph) at altitudes of 67 miles, reaching the very edge of space. 

Dubbed the “finest and most productive research aircraft ever seen,” the X-15 was officially retired on October 24, 1968. The information collected by the X-15 contributed to the development of the Mercury, Gemini, Apollo, and Space Shuttle programs. 

To learn more about how we have revolutionized aeronautics, watch our Leading Edge of Flight video. 

image

On July 20, 1969, Neil Armstrong and Buzz Aldrin became the first humans to walk on the moon. The crew of Apollo 11 had the distinction of completing the first return of soil and rock samples from beyond Earth. 

Astronaut Gene Cernan, during Apollo 17, was the last person to have walked on the surface of the moon. (For now!)

The Lunar Roving Vehicle was a battery-powered rover that the astronauts used during the last three Apollo missions. 

To learn more about other types of technology that we have either invented or improved, watch our video: Trailblazing Technology.

image

Our long-term Earth-observing satellite program began on July 23, 1972 with the launch of Landsat 1, the first in a long series (Landsat 9 is expected to launch in 2020!) We work directly with the U.S. Geological Survey to use Landsat to monitor and manage resources such as food, water, and forests. 

Landsat data is one of many tools that help us observe in immense detail how our planet is changing. From algae blooms to melting glaciers to hurricane flooding, Landsat is there to help us understand our own planet better. 

Off the Earth, for the Earth.

To learn more about how we contribute to the Earth sciences, watch our video: Home, Sweet Home. 

image

Space Transportation System-1, or STS-1, was the first orbital spaceflight of our Space Shuttle program. 

The first orbiter, Columbia, launched on April 12, 1981. Over the next thirty years, Challenger, Discovery, Atlantis, and Endeavour would be added to the space shuttle fleet. 

Together, they flew 135 missions and carried 355 people into space using the first reusable spacecraft.

image

On January 16, 1978, we selected a class of 35 new astronauts–including the first women and African-American astronauts. 

And on June 18, 1983, Sally Ride became the first American woman to enter space on board Challenger for STS-7. 

To learn more about our astronauts, then and now, watch our Humans in Space video.

image

Everybody loves Hubble! The Hubble Space Telescope was launched into orbit on April 24, 1990, and has been blowing our minds ever since. 

Hubble has not only captured stunning views of our distant stars and galaxies, but has also been there for once-in-a-lifetime cosmic events. For example, on January 6, 2010, Hubble captured what appeared to be a head-on collision between two asteroids–something no one has ever seen before.

In this image, Hubble captures the Carina Nebula illuminating a three-light-year tall pillar of gas and dust. 

To learn more about how we have contributed to our understanding of the solar system and beyond, watch our video: What’s Out There?

image

Cooperation to build the International Space Station began in 1993 between the United States, Russia, Japan, and Canada. 

The dream was fully realized on November 2, 2000, when Expedition 1 crew members boarded the station, signifying humanity’s permanent presence in space!

Although the orbiting lab was only a couple of modules then, it has grown tremendously since then! 

To learn more about what’s happening on the orbiting outpost today, visit the Space Station page.

image

We have satellites in the sky, humans in orbit, and rovers on Mars. Very soon, we will be returning humankind to the Moon, and using it as a platform to travel to Mars and beyond.

And most importantly, we bring the universe to you. 

What are your favorite NASA moments? We were only able to share a few of ours here, but if you want to learn about more important NASA milestones, check out 60 Moments in NASA History or our video, 60 Years in 60 Seconds. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago
If The Moon Were Replaced With Some Of Our Planets (at Night)
If The Moon Were Replaced With Some Of Our Planets (at Night)
If The Moon Were Replaced With Some Of Our Planets (at Night)
If The Moon Were Replaced With Some Of Our Planets (at Night)
If The Moon Were Replaced With Some Of Our Planets (at Night)
If The Moon Were Replaced With Some Of Our Planets (at Night)
If The Moon Were Replaced With Some Of Our Planets (at Night)
If The Moon Were Replaced With Some Of Our Planets (at Night)

If the Moon were replaced with some of our planets (at night)

Image credit: yeti dynamics

6 years ago

6 Ways NASA Technology Makes You Healthier

An important part of our mission is keeping astronauts strong and healthy during stays in space, but did you know that our technology also helps keep you healthy? And the origins of these space innovations aren’t always what you’d expect.

As we release the latest edition of NASA Spinoff, our yearly publication that celebrates all the ways NASA technology benefits us here on Earth, let’s look at some ways NASA is improving wellness for astronauts—and everyone else.

1.      Weightless weight-lifting

image

Without gravity to work against, astronauts lose bone and muscle mass in space. To fight it, they work out regularly. But to get them a good burn, we had to get creative. After all, pumping iron doesn’t do much good when the weights float.

The solution? Elastic resistance. Inventor Paul Francis was already working on a portable home gym that relied on spiral-shaped springs made of an elastic material. He thought the same idea would work on the space station and after additional development and extensive testing, we agreed.

Our Interim Resistive Exercise Device launched in 2000 to help keep astronauts fit. And Francis’ original plan took off too. The technology perfected for NASA is at the heart of the Bowflex Revolution as well as a new line of handheld devices called OYO DoubleFlex, both of which enable an intensive—and extensive—workout, right at home.

2.      Polymer coating keeps hearts beating

image

A key ingredient in a lifesaving treatment for many patients with congestive heart failure is made from a material a NASA researcher stumbled upon while working on a supersonic jet in the 1990s.

Today, a special kind of pacemaker that helps synchronize the left and right sides of the heart utilizes the unique substance known as LaRC-SI. The strong material can be cast extremely thin, which makes it easier to insert in the tightly twisted veins of the heart, and because it insulates so well, the pacemaker’s electric pulses go exactly where they should.

Since it was approved by the FDA in 2009, the device has been implanted hundreds of thousands of times.

 3.  Sutures strong enough for interplanetary transport

image

Many people mistakenly think we created Teflon. Not true: DuPont invented the unique polymer in 1938. But an innovative new way to use the material was developed to help us transport samples back from Mars and now aids in stitching up surgery patients.

Our scientists would love to get pristine Martian samples into our labs for more advanced testing. One complicating factor? The red dust makes it hard to get a clean seal on the sample container. That means the sample could get contaminated on its way back to Earth.

The team building the cannister had an idea, but they needed a material with very specific properties to make it work. They decided to use Polytetrafluoroethylene (that’s the scientific name for Teflon), which works really well in space.

The material we commonly recognize as Teflon starts as a powder, and to transform it into a nonstick coating, the powder gets processed a certain way. But process it differently, and you can get all kinds of different results.

For our Mars sample return cannister prototype, the powder was compressed at high pressures into a block, which was then forced through an extruder. (Imagine pressing playdough through a mold). It had never been done before, but the end result was durable, flexible and extremely thin: exactly what we needed.

And since the material can be implanted safely in the human body—it was also perfect as super strong sutures for after surgery.

4.      Plant pots that clean the air

image

It may surprise you, but the most polluted air you breathe is likely the air inside your home and office. That’s especially true these days with energy-efficient insulation: the hot air gets sealed in, but so do any toxins coming off the paint, furniture, cooking gas, etc.

This was a problem NASA began worrying about decades ago, when we started planning for long duration space missions. After all, there’s no environment more insulated than a spaceship flying through the vacuum of space.

On Earth, plants are a big part of the “life support” system cleaning our air, so we wondered if they could do the same indoors or in space.

The results from extensive research surprised us: we learned the most important air scrubbing happens not through a plant’s leaves, but around its roots. And now you can get the cleanest air out of your houseplants by using a special plant pot, available online, developed with that finding in mind: it maximizes air flow through the soil, multiplying the plant’s ability to clean your air.

5.      Gas sensor detects pollution from overhead

image

Although this next innovation wasn’t created with pollution in mind, it’s now helping keep an eye on one of the biggest greenhouse gasses: methane.

We created this tiny methane “sniffer” to help us look for signs of life on Mars. On Earth, the biggest source of methane is actually bacteria, so when one of our telescopes on the ground caught a glimpse of the gas on Mars, we knew we needed to take a closer look.

We sent this new, extremely sensitive sensor on the Curiosity Rover, but we knew it could also be put to good use here on our home planet.  We adapted it, and today it gets mounted on drones and cars to quickly and accurately detect gas leaks and methane emissions from pipelines, oil wells and more.

The sensor can also be used to better study emissions from swamps and other natural sources, to better understand and perhaps mitigate their effects on climate change.

6.      DNA “paint” highlights cellular damage

image

There’s been a lot of news lately about DNA editing: can genes be changed safely to make people healthier? Should they be?

As scientists and ethicists tackle these big questions, they need to be sure they know exactly what’s changing in the genome when they use the editing tools that already exist.

Well, thanks to a tool NASA helped create, we can actually highlight any abnormalities in the genetic code with special fluorescent “paint.”

But that’s not all the “paint” can do. We actually created it to better understand any genetic damage our astronauts incurred during their time in space, where radiation levels are far higher than on Earth. Down here, it could help do the same. For example, it can help doctors select the right cancer treatment by identifying the exact mutation in cancer cells.

You can learn more about all these innovations, and dozens more, in the 2019 edition of NASA Spinoff. Read it online or request a limited quantity print copy and we’ll mail it to you!

6 years ago

Black holes

A black hole is a region of spacetime exhibiting such strong gravitational effects that nothing—not even particles and electromagnetic radiation such as light—can escape from inside it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways a black hole acts like an ideal black body, as it reflects no light.  

image

The idea of a body so massive that even light could not escape was briefly proposed by astronomical pioneer and English clergyman John Michell in a letter published in November 1784. Michell’s simplistic calculations assumed that such a body might have the same density as the Sun, and concluded that such a body would form when a star’s diameter exceeds the Sun’s by a factor of 500, and the surface escape velocity exceeds the usual speed of light.

image

At the center of a black hole, as described by general relativity, lies a gravitational singularity, a region where the spacetime curvature becomes infinite. For a non-rotating black hole, this region takes the shape of a single point and for a rotating black hole, it is smeared out to form a ring singularity that lies in the plane of rotation. In both cases, the singular region has zero volume. It can also be shown that the singular region contains all the mass of the black hole solution. The singular region can thus be thought of as having infinite density. 

image

How Do Black Holes Form?

Scientists think the smallest black holes formed when the universe began.

Stellar black holes are made when the center of a very big star falls in upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space.

image

Scientists think supermassive black holes were made at the same time as the galaxy they are in.

Supermassive black holes, which can have a mass equivalent to billions of suns, likely exist in the centers of most galaxies, including our own galaxy, the Milky Way. We don’t know exactly how supermassive black holes form, but it’s likely that they’re a byproduct of galaxy formation. Because of their location in the centers of galaxies, close to many tightly packed stars and gas clouds, supermassive black holes continue to grow on a steady diet of matter.

image

If Black Holes Are “Black,” How Do Scientists Know They Are There?

A black hole can not be seen because strong gravity pulls all of the light into the middle of the black hole. But scientists can see how the strong gravity affects the stars and gas around the black hole. 

Scientists can study stars to find out if they are flying around, or orbiting, a black hole.

image

When a black hole and a star are close together, high-energy light is made. This kind of light can not be seen with human eyes. Scientists use satellites and telescopes in space to see the high-energy light.

image

On 11 February 2016, the LIGO collaboration announced the first observation of gravitational waves; because these waves were generated from a black hole merger it was the first ever direct detection of a binary black hole merger. On 15 June 2016, a second detection of a gravitational wave event from colliding black holes was announced. 

image

Simulation of gravitational lensing by a black hole, which distorts the image of a galaxy in the background 

Animated simulation of gravitational lensing caused by a black hole going past a background galaxy. A secondary image of the galaxy can be seen within the black hole Einstein ring on the opposite direction of that of the galaxy. The secondary image grows (remaining within the Einstein ring) as the primary image approaches the black hole. The surface brightness of the two images remains constant, but their angular size varies, hence producing an amplification of the galaxy luminosity as seen from a distant observer. The maximum amplification occurs when the background galaxy (or in the present case a bright part of it) is exactly behind the black hole.

Could a Black Hole Destroy Earth?

Black holes do not go around in space eating stars, moons and planets. Earth will not fall into a black hole because no black hole is close enough to the solar system for Earth to do that.

image

Even if a black hole the same mass as the sun were to take the place of the sun, Earth still would not fall in. The black hole would have the same gravity as the sun. Earth and the other planets would orbit the black hole as they orbit the sun now.

The sun will never turn into a black hole. The sun is not a big enough star to make a black hole.

More posts about black holes

Source 1, 2 & 3

4 years ago
The Scorpii AR System
The Scorpii AR System

The Scorpii AR system

In the system AR Scorpii a rapidly spinning white dwarf star powers electrons up to almost the speed of light. These high energy particles release blasts of radiation that lash the companion red dwarf star, and cause the entire system to pulse dramatically every 1.97 minutes with radiation ranging from the ultraviolet to radio.

The star system AR Scorpii, or AR Sco for short, lies in the constellation of Scorpius, 380 light-years from Earth. It comprises a rapidly spinning white dwarf, the size of Earth but containing 200,000 times more mass, and a cool red dwarf companion one third the mass of the Sun, orbiting one another every 3.6 hours in a cosmic dance as regular as clockwork.

Read more at: cosmosmagazine & astronomynow

6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

6 years ago

Far from Westeros, a Three-Eyed Raven Helps NASA Find Its Way

Perched on the outside of the International Space Station is Raven—a technology-filled module that helps NASA develop a relative navigation capability, which is essentially autopilot for spacecraft. Raven has been testing technologies to enable autonomous rendezvous in space, which means the ability to approach things in space without human involvement, even from the ground.

image

Developed by the Satellite Servicing Projects Division (SSPD), our three-eyed Raven has visible, infrared, and Lidar sensors and uses those “eyes” to image and track visiting spacecraft as they come and go from the space station. Although Raven is all-seeing, it only sees all in black and white. Color images do not offer an advantage in the case of Raven and Restore-L, which also utilize infrared and Lidar sensors.

The data from Raven’s sensors is sent to its processor, which autonomously sends commands that swivel Raven on its gimbal, or pointing system. When Raven turns using this system, it is able to track a vehicle. While these maneuvers take place, NASA operators evaluate the movements and make adjustments to perfect the relative navigation system technologies. 

Far From Westeros, A Three-Eyed Raven Helps NASA Find Its Way

A few days ago, Raven completed its 21st observation of a spacecraft when it captured images of Northrop Grumman’s Cygnus vehicle delivering science investigations and supplies as part of its 11th commercial resupply services mission, including another SSPD payload called the Robotic External Leak Locator.

image

And just last month, Raven celebrated its two-year anniversary in space, marking the occasion with an observation of SpaceX’s Crew Dragon during the Demo-1 mission.

image

What is this—a spacecraft for ants??

While this shot of Dragon isn’t terribly impressive because of where the spacecraft docked on station, Raven has captured some truly great images when given the right viewing conditions. 

From SpaceX Dragon resupply mission observations…

image

…to Cygnus supply vehicles.

image

Raven has observed six unique types of spacecraft. 

It has also conducted a few observations not involving spacecraft, including the time it captured Hurricane Irma…

image

…or the time it captured station’s Dextre arm removing the Robotic Refueling Mission 3 payload, another mission developed by SSPD, from the Dragon spacecraft that delivered it to the orbiting laboratory.

image
image

Thus far, Raven has had a great, productive life aboard the station, but its work isn’t done yet! Whether it’s for Restore-L, which will robotically refuel a satellite, or getting humans to the Moon or Mars, the technologies Raven is demonstrating for a relative navigation system will support future NASA missions for decades to come.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

  • hwaseongstudies
    hwaseongstudies reblogged this · 1 year ago
  • midnightshadows59
    midnightshadows59 reblogged this · 3 years ago
  • midnightshadows59
    midnightshadows59 reblogged this · 3 years ago
  • midnightshadows59
    midnightshadows59 liked this · 3 years ago
  • wtimetravelgentlemen
    wtimetravelgentlemen liked this · 3 years ago
  • wellarentyoujustarayofpitchblack
    wellarentyoujustarayofpitchblack reblogged this · 3 years ago
  • wellarentyoujustarayofpitchblack
    wellarentyoujustarayofpitchblack liked this · 3 years ago
  • house-elf-magic
    house-elf-magic reblogged this · 3 years ago
  • house-elf-magic
    house-elf-magic liked this · 3 years ago
  • bae-route
    bae-route liked this · 3 years ago
  • hunterboysbelt112
    hunterboysbelt112 reblogged this · 3 years ago
  • hunterboysbelt112
    hunterboysbelt112 liked this · 3 years ago
  • ceramictoadstool
    ceramictoadstool liked this · 3 years ago
  • scribblerim
    scribblerim liked this · 3 years ago
  • cassieisacatcookie
    cassieisacatcookie liked this · 3 years ago
  • fruitshake
    fruitshake reblogged this · 3 years ago
  • fruitshake
    fruitshake liked this · 3 years ago
  • amblyopsidae
    amblyopsidae liked this · 3 years ago
  • iamteamponcho
    iamteamponcho liked this · 3 years ago
  • solarwindscosplay
    solarwindscosplay reblogged this · 3 years ago
  • solarwindscosplay
    solarwindscosplay liked this · 3 years ago
  • i-heard-it-from-a-friend
    i-heard-it-from-a-friend liked this · 3 years ago
  • viridescent-vinca
    viridescent-vinca reblogged this · 3 years ago
  • viridescent-vinca
    viridescent-vinca liked this · 3 years ago
  • reblogblogbog
    reblogblogbog reblogged this · 3 years ago
  • alderjayne
    alderjayne liked this · 3 years ago
  • mandatory-orange-poncho
    mandatory-orange-poncho liked this · 3 years ago
  • narwhalsarefalling
    narwhalsarefalling reblogged this · 3 years ago
  • rosas-doradas
    rosas-doradas liked this · 4 years ago
  • witchdoctorfox
    witchdoctorfox liked this · 4 years ago
  • trinns
    trinns liked this · 5 years ago
  • sadcats13
    sadcats13 liked this · 5 years ago
  • freedomforeverybody118
    freedomforeverybody118 liked this · 5 years ago
  • annapolisrose
    annapolisrose liked this · 5 years ago
  • fabien-euskadi
    fabien-euskadi reblogged this · 5 years ago
  • fabien-euskadi
    fabien-euskadi liked this · 5 years ago
  • memory-diagnostic
    memory-diagnostic liked this · 5 years ago
  • eggpla
    eggpla liked this · 5 years ago
  • mosleymoe
    mosleymoe liked this · 5 years ago
  • sailears
    sailears reblogged this · 5 years ago
  • sailears
    sailears liked this · 5 years ago
  • amandathescarlet-reblog
    amandathescarlet-reblog reblogged this · 5 years ago
  • amandathescarlet
    amandathescarlet liked this · 5 years ago
  • thathalloweengal
    thathalloweengal reblogged this · 5 years ago
  • jiskra-j
    jiskra-j liked this · 5 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags